vSAN File Service & Kubernetes PVs with an implicit quota

Earlier this week, I participated in a customer call around vSAN File Service and Kubernetes Persistent Volumes. I have highlighted the dynamic Read-Write-Many Persistent Volume feature of our vSphere CSI driver in conjunction with vSAN File Service before. Read-Write-Many (RWX) volumes are volumes that can be accessed/shared by multiple containers. During the discussion, one question came up in relation to quota, and if it can be applied to Persistent Volumes which are backed by file shares from vSAN File Service, which is the purpose of this post. Now, for those of you who are familiar with vSAN File Service, you…

A closer look at Cluster API and TKG v1.3.1

In this post, I am going to take a look at Cluster API, and then take a look at some of the changes made to TKG v.1.3.1. TKG uses Cluster API extensively to create workload Kubernetes clusters, so we will be able to apply what we see from the first part of this post to TKG in the second part. There is already an extensive amount of information and documentation available on Cluster API, so I am not going to cover every aspect of it here. This link will take you to the Cluster API concepts, which discusses all the…

A first look at vSphere VM Service

In this post, we will take a look at a brand new service that is now available in vSphere with Tanzu, called the vSphere VM Service. This new services enables developers to create virtual machines on vSphere Infrastructure via Kubernetes YAML manifests, just like they would create Tanzu Kubernetes clusters via the TKG service, or PodVMs via the Pod service, both of which are already available in vSphere with Tanzu. Since we feel that many applications will be made up of both containers and VMs, this is the first step in enabling developers to create these multi-faceted applications via the…

CSI Topology – Configuration How-To

In this post, we will look at another feature of the vSphere CSI driver that enables the placement of Kubernetes objects on different vSphere environments using a combination of vSphere Tags and a feature of the CSI driver called topology or failure domains. To achieve this, some additional entries must be added to the vSphere CSI driver configuration file. The CSI driver discovers each Kubernetes node/virtual machine topology, and through the kubelet, adds them as labels to the nodes. Please note that at the time of writing, the volume topology and availability zone feature was still in beta with vSphere…

vSphere CSI v2.2 – Online Volume Expansion

The vSphere CSI driver version 2.2 has just released. One of the features I was looking forward to in this release is the inclusion of Online Volume Expansion. While volume expansion was in earlier releases, it was always an offline operation. In other words, you have to detach the volume from the pod, grow it, and then attach it back when the expand operation completed. In this version, there is no need to remove the Pod. In this short post, I’ll show a quick demonstration of how it is done. Requirements Note: This feature requires vSphere 7.0 Update 2 (U2).…

VCP to vSphere CSI Migration in Kubernetes

When VMware first introduced support for Kubernetes, our first storage driver was the VCP, the in-tree vSphere Cloud Provider. Some might remember that this driver was referred to as Project Hatchway back in the day. This in-tree driver allows Kubernetes to consume vSphere storage for persistent volumes. One of draw-backs to the in-tree driver approach was that every storage vendor had to include their own driver in each Kubernetes distribution, which ballooned the core Kubernetes code and made maintenance difficult. Another drawback of this approach was that vendors typically had to wait for a new version of Kubernetes to release…

Using a Kubernetes Operator to query vSphere Resources

As many regular readers will be aware, I’ve spent a bit of time in the past looking at how vSphere resources are consumed by Kubernetes objects, when Kubernetes is deployed as a set of virtual machines on top of vSphere infrastructure. While much of this is visible in the vSphere client, I’m focused on how to see this vSphere resource consumption from within Kubernetes. If I am working in Kubernetes, I’d rather not context switch out to the vSphere client just to see how much storage is left on a datastore or how much CPU and Memory is left on…